EIT Food News

State-of-the-art Technologies in Intelligent Packaging

Dr. Nyi-Nyi Htun
KU Leuven, Belgium

Due to the increasing demand towards sustainable productions that calls for ensuring the safety and quality of food and reducing incident risks and environmental impact, contemporary food business organisations have begun to focus on the possibilities to expand the shelf life of perishable food products by reducing the demand for additives and preservatives, and at the same time considering changes in quality. To this end, smart packaging systems which utilise technologies, for example oxygen scavengers, antimicrobial agents, sensors and status indicators, have emerged (Realini and Marcos 2014).

While traditional packaging focused on the use of inert materials which comes in contact with food, smart packaging systems are based on the useful interaction between packaging environment and the food to provide active protection to the food and a better understanding of product condition for consumers (Biji et al. 2015). Smart packaging systems involve two concepts: active and intelligent packaging (Biji et al. 2015; Vanderroost et al. 2014). The following figure shows a framework proposed by Yam et al. (Yam, Takhistov, and Miltz 2005) which encapsulates various packaging technologies.

Framework of active and intelligent packaging. (Yam et al. 2005)

Fundamentally, active packaging aims to achieve better protection of the product whereas intelligent packaging to achieve better communication with consumers. Intelligent packages allow monitoring the quality/safety condition of a food product and can provide early warning to the consumer or food manufacturer, whereas active packages release a type of substance such as an antimicrobial or antioxidant within the package to protect the food product. Typically, intelligent packaging systems contain smart devices which are small, inexpensive labels or tags that are capable of acquiring, storing, and transferring information about the functions and properties of the packaged food (Fang et al. 2017).

This article presents an overview of available technologies in intelligent packaging by synthesing a number of existing research papers (Biji et al. 2015; Chowdhury and Morey 2019; Fang et al. 2017; Ghaani et al. 2016; Kuswandi et al. 2011; Lloyd, Mirosa, and Birch 2018; Mohebi and Marquez 2015; Müller and Schmid 2019; Singh et al. 2018; Vanderroost et al. 2014). To begin with, intelligent packaging includes 3 distinct technologies; these are indicators, sensors and data carriers. The following table (curated from (Fang et al. 2017; Mohebi and Marquez 2015; Pavelková 2013) highlights an overview of indicators, sensors and data carriers that are being used in the domain of intelligent packaging.

Time-temperatures indicatorsMechanical, chemical, enzymaticStorage conditions  Foods stored under chilled and frozen conditionsEasy to integrate, can be checked by naked eye, cheap and economical, can be measured by electronic devicesNo information about quality of food, must be conditioned before use, no contact with food
Freshness indicators (e.g. microbial growth)pH dyes, all dyes reacting with certain metabolitesMicrobial quality of food (i.e. spoilage)Perishable foods such as meat, fish and poultrySensitive, can be checked by naked eye, cheap and economical, can be measured by electronic devicesProne to false negatives results, may interfere in food quality
Gas indicatorsRedox dyes, pH dyes, enzymesStorage conditions, package leakFoods stored in packages with required gas compositionCan be integrated into the packaging films, can be checked by naked eye, cheap and economical, can be measured by electronic devicesNo information about gas concentration, chemical dye may interfere in food quality
Biosensor (e.g. pathogen)Various chemical and immunochemical methods reacting with toxinsSpecific pathogenic bacteria such as Escherichia coli O:157Perishable foods such as meat, fish and poultryCan be integrated into the packaging films, can be checked by naked eye, cheap and economical, can be measured by electronic devices, pathogen and microbial detectionCannot detect low concentrated contamination, may have chemical effect on the food
Gas sensorsMetal oxide semiconductor field-effect transistors (MOSFETs), piezo-electric crystal sensors, amperometric oxygen sensors, organic conducting polymers, and potentiometric carbon dioxide sensorsConcentration of carbon dioxide, oxygen, hydrogen sulphide  Perishable foods such as meat, fish and poultrySensitive, can be integrated into the packaging films, high spatial resolution, can be checked by naked eye and optical devices, not affected by heat, electromagnetic and stirringFouling of sensor membranes, cross-sensitivity to carbon dioxide and hydrogen sulphide, consumption of the analyte (e.g., oxygen)
BarcodesSymbologyProduct and manufacturer informationProduct identification, facilitating inventory control, stock reordering, and checkoutFast, cheap, easy to printRequires line of sight
RFID tagsRadio wavesProduct and manufacturer informationProduct identification, supply chain management, asset tracking, security controlAccurate, fast, can be printed into barcodes.The signal can be lost due to interference, printed tags can be expensive.


Indicators are devices that convey information associated with the presence or absence of a substance, the amount of the substance, or the degree of interaction between two or more substances (Chowdhury and Morey 2019). Typically, such information is displayed to consumers through visual changes, for example, different colour intensities or the diffusion of a dye along a straight path (Biji et al. 2015). Literature has highlighted three different types of indicators: time temperature indicators, freshness indicators and gas indicators (Biji et al. 2015; Chowdhury and Morey 2019; Müller and Schmid 2019).

Time Temperature Indicators

Time temperature indicators (TTIs) can be placed in individual or bulk packages to convey time-temperature history of a product (Chowdhury and Morey 2019). They are particularly useful to warn consumers of temperature abuse for chilled or frozen food products (Pavelková 2013). A subcategory of TTIs known as thermochromic ink uses a type of functional ink that changes colour with exposure to different temperatures (Vanderroost et al. 2014). By definition, function inks are printable inks that react to environmental changes with colour change (Glicoric et al. 2019). Other examples of functional ink include photochromic inks that change their colour when the intensity of incoming light changes, invisible fluorescent inks that can be seen under UV or IR light, phosphorescent inks that glow in the dark after exposure to a source of light, hydrochromic inks that change colour after contact with water, and touch’n smell inks that release aroma when rubbed with a finger, among others (TagItSmart, 2017).

Vitsab® L5-8 TTI seafood label. Image:, accessed on 26 May 2020. The green boxes are examples of the TTI labels at various stages of thermal exposure and the orange boxes are examples of potentially compromised food product (red dots) and faulty indicator (white dot)
QR code printed on a beer bottle with thermochromic ink that activates and becomes visible when the temperature is lower than 8 °C. Image: (Gligoric et al. 2019)

Freshness Indicators

Freshness indicators provide direct product quality information resulting from microbial growth or chemical changes within a food product (Chowdhury and Morey 2019). Certain metabolites that are targeted in detecting freshness are organic acids, ethanol, volatile nitrogen, biogenic amines, carbon dioxide, glucose, and sulfuric compounds (Kerry, O’Grady, and Hogan 2006). Freshness is determined through reactions between indicators included within the package and said compounds (Ghaani et al. 2016).

SensorQTM freshness indicator label (Food Quality Sensor International (FQSI), Inc., USA). Image: (O’Grady and Kerry 2008). The colour inside of the letter ‘Q’ on the label indicates freshness (orange = fresh and tan = not fresh)

Gas Indicators

Gas indicators can monitor changes in the inside atmosphere of a package due to microorganism metabolism and enzymatic or chemical reactions on the food (Ghaani et al. 2016). Oxygen and carbon dioxide concentrations are most commonly captured by gas indicators (Müller and Schmid 2019) since their concentration is strongly correlated with spoilage (Meng et al. 2014). Gas indicators often use redox dyes, a reducing compound and an alkaline compound to indicate the concentration (Ghaani et al. 2016).

AGELESS EYE oxygen indicator by Mitsubishi Gas Chemical Company, Inc. Image:, accessed on 26 May 2020. The indicator turns to blue or purple when exposed to oxygen and returns to its original pink colour when oxygen in the package is reduced.


Sensors are used to detect a wider range of chemicals inside food packages with greater functionalities. They can detect and respond to some type of input from the physical environment, and the output is generally a signal that is converted to a human-readable display. Unlike indicators which can display the state of a product in the package, sensors are often monitored by an external device (Kerry et al. 2006). Sensors commonly found in literature are biosensors are gas sensors.


Biosensors are used to detect, record and transmit information pertaining to biological reactions of food products (Biji et al. 2015). They contain a bioreceptor that recognises elements such as enzymes, antigens, hormones, nucleic acids, etc. and a transducer which uses optical amperometry, acoustic and electrochemical sensors, connected to data acquisition and processing system (Chowdhury and Morey 2019).

Gas Sensors

Gas sensors are used for detecting the presence of gaseous analyte in the package, such as oxygen, carbon dioxide, water vapour, ethanol, hydrogen sulphide, etc. (Biji et al. 2015). As the spoilage status of a food product can be determined by monitoring the concentration of certain gases, like carbon dioxide or hydrogen sulphide (Müller and Schmid 2019), gas sensors in food packaging often focus on monitoring such gases.

Data Carriers

Data carriers are used as a medium to support traceability of products. Radiofrequency identification (RFID) and barcode are the most common forms of data carrier used in this domain (Robertson 2016). They make the information flow within the food supply chain more efficient by supporting automatization and traceability. Smartphones nowadays are capable of reading most RFID tags and barcodes which makes them the most ideal starting point to enhance communication with consumers.


RFID uses electromagnetic fields to automatically identify and track tags attached to objects. They are the most advanced example of a data carrier (Ghaani et al. 2016). An RFID system includes three main elements: 1) a tag formed by a microchip connected to a tiny antenna, 2) a reader that emits radio signals and receives answers from the tag in return and 3) a middleware (i.e. a network connection, web server, etc.) that bridges the RFID hardware and enterprise applications (Ghaani et al. 2016). With recent breakthroughs in the domain of printed electronics, RFID tags can be printed on flexible substrates such as polyimide, PEEK, PET, transparent conductive polyester, steel and even paper using electrically functional inks (Vanderroost et al. 2014).

An example RFID system showing three main elements: a tag, a reader and middleware (network, web server, etc.). Image: (Fang et al. 2017)


Barcodes are the most basic form of data carrier in intelligent packaging. They have been used in food packaging since 1970 to accelerate inventory control, stock reordering and checkout of products (Manthou and Vlachopoulou 2001). Although barcodes traditionally do not provide any kind of information on the quality status of food, a number of previous work has explored the possibilities of using thermochromic ink to print barcodes (Ghaani et al. 2016; Vanderroost et al. 2014), or combining environmental sensitive areas with 2-dimensional barcodes (aka QR codes) (Gligoric et al. 2019).

A 1-dimensional barcode (left) and a 2-dimensional barcode (QR code) (right)


This article presents an overview of the state of the arts in intelligent packaging technology. In general, there are three main components in intelligent packaging technology: indicator, sensor and data carrier. Some of the most popular sub-components of the three main components include time temperature indicator, freshness indicator, gas indicator, biosensor, gas sensor, RFID and barcode. Quite a number of research work has already identified a great number of commercially available smart packaging technologies that are inexpensive (Biji et al. 2015; Chowdhury and Morey 2019; Fang et al. 2017; Ghaani et al. 2016; Kuswandi et al. 2011; Lloyd et al. 2018; Mohebi and Marquez 2015; Müller and Schmid 2019; Singh et al. 2018; Vanderroost et al. 2014). Despite this, we have not yet seen the majority of said technologies being used widely. Research has suggested that end-user acceptance and trust towards a given technology have a strong influence on their adoption of the technology (Suh and Han 2002; Wu et al. 2011). In the next article, we will look at the barriers and enablers influencing the adoption of intelligent packaging technologies from end-user point of view.

Cover Photo: Shutterstock


Biji, K. B., C. N. Ravishankar, C. O. Mohan, and T. K. Srinivasa Gopal. 2015. “Smart Packaging Systems for Food Applications: A Review.” Journal of Food Science and Technology 52(10):6125–35.

Chowdhury, E. U. and A. Morey. 2019. “Intelligent Packaging for Poultry Industry.” Journal of Applied Poultry Research 28(4):791–800.

Fang, Zhongxiang, Yanyun Zhao, Robyn D. Warner, and Stuart K. Johnson. 2017. “Active and Intelligent Packaging in Meat Industry.” Trends in Food Science and Technology 61:60–71.

Ghaani, Masoud, Carlo A. Cozzolino, Giulia Castelli, and Stefano Farris. 2016. “An Overview of the Intelligent Packaging Technologies in the Food Sector.” Trends in Food Science and Technology 51:1–11.

Gligoric, Nenad, Srdjan Krco, Liisa Hakola, Kaisa Vehmas, Suparna De, Klaus Moessner, Kristoffer Jansson, Ingmar Polenz, and Rob Van Kranenburg. 2019. “Smarttags: IoT Product Passport for Circular Economy Based on Printed Sensors and Unique Item-Level Identifiers.” Sensors (Switzerland) 19(3):586.

Kerry, J. P., M. N. O’Grady, and S. A. Hogan. 2006. “Past, Current and Potential Utilisation of Active and Intelligent Packaging Systems for Meat and Muscle-Based Products: A Review.” Meat Science 74(1):113–30.

Kuswandi, Bambang, Yudi Wicaksono, Jayus, Aminah Abdullah, Lee Yook Heng, and Musa Ahmad. 2011. “Smart Packaging: Sensors for Monitoring of Food Quality and Safety.” Sensing and Instrumentation for Food Quality and Safety 5(3–4):137–46.

Lloyd, Kayna, Miranda Mirosa, and John Birch. 2018. “Active and Intelligent Packaging.” Pp. 177–82 in Encyclopedia of Food Chemistry, edited by L. Melton, F. Shahidi, and P. Varelis. Oxford: Academic Press.

Manthou, Vassiliki and Maro Vlachopoulou. 2001. “Bar-Code Technology for Inventory and Marketing Management Systems: A Model for Its Development and Implementation.” International Journal of Production Economics 71(1–3):157–64.

Meng, Xiangpeng, Saehoon Kim, Pradeep Puligundla, and Sanghoon Ko. 2014. “Carbon Dioxide and Oxygen Gas Sensors-Possible Application for Monitoring Quality, Freshness, and Safety of Agricultural and Food Products with Emphasis on Importance of Analytical Signals and Their Transformation.” Journal of the Korean Society for Applied Biological Chemistry 57(6):723–33.

Mohebi, Ehsan and Leorey Marquez. 2015. “Intelligent Packaging in Meat Industry: An Overview of Existing Solutions.” Journal of Food Science and Technology 52(7):3947–64.

Müller, Patricia and Markus Schmid. 2019. “Intelligent Packaging in the Food Sector: A Brief Overview.” Foods 8(1):16.

O’Grady, Michael N. and Joseph P. Kerry. 2008. “Smart Packaging Technologies and Their Application in Conventional Meat Packaging Systems.” Pp. 425–51 in Meat Biotechnology. Springer New York.

Pavelková, Adriana. 2013. “Time Temperature Indicators as Devices Intelligent Packaging.” Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61(1):245–51.

Realini, Carolina E. and Begonya Marcos. 2014. “Active and Intelligent Packaging Systems for a Modern Society.” Meat Science 98(3):404–19.

Robertson, Gordon L. 2016. Food Packaging: Principles and Practice. CRC press.

Singh, Bhanu Pratap, Vivek Shukla, Hnialum Lalawmpuii, and Sunil Kumar. 2018. “Indicator Sensors for Monitoring Meat Quality : A Review.” Journal of Pharmacognosy and Phytochemistry 7(4):809–12.

Suh, Bomil and Ingoo Han. 2002. “Effect of Trust on Customer Acceptance of Internet Banking.” Electronic Commerce Research and Applications 1(3–4):247–63.

Vanderroost, Mike, Peter Ragaert, Frank Devlieghere, and Bruno De Meulenaer. 2014. “Intelligent Food Packaging: The next Generation.” Trends in Food Science and Technology 39(1):47–62.

Wu, Kewen, Yuxiang Zhao, Qinghua Zhu, Xiaojie Tan, and Hua Zheng. 2011. “A Meta-Analysis of the Impact of Trust on Technology Acceptance Model: Investigation of Moderating Influence of Subject and Context Type.” International Journal of Information Management 31(6):572–81.

Yam, Kit L., Paul T. Takhistov, and Joseph Miltz. 2005. “Intelligent Packaging: Concepts and Applications.” Journal of Food Science 70(1):R1–10.

5 replies on “State-of-the-art Technologies in Intelligent Packaging”

You’re so interesting! I do not think I’ve read something like this before. So wonderful to find another person with genuine thoughts on this subject matter. Seriously.. thank you for starting this up. This web site is something that is needed on the internet, someone with some originality!

Leave a Reply

Your email address will not be published.